(11 mg) was isolated from the basic extract (1.55 g) of *A tabernaemontana* roots (500 g) collected late in the winter. This proved to be *decarbomethoxytetra-hydrosecamine*. Its high resolution MS gave a molecular ion peak at m/e 622 (622·4248 corr. to $C_{40}H_{54}N_4O_2$) and base peak at m/e 126. Amorphous; $[\alpha]_{1}^{20}$ 0° (EtOH); λ_{m} (EtOH) 224, 284, 292 nm; v_{m} (CHCl₃) 3360 (NH), 1738 (satd. ester) cm⁻¹. (The latter is of much smaller intensity than the corr. peak of tetrahydrosecamine.)

REFERENCES

- Zsadon, B., Tamás, J. and Szilasi, M. (1974) Acta Chim. (Budapest) 80, 359.
- Evans, D. A., Joule, J. A. and Smith, G. F. (1968) Phytochemistry 7, 1429.
- Evans, D. A., Smith, G. F., Smith, G. N. and Stapleford, K. S. J. (1968) Chem. Comm. 859.
- Cordell, G. A., Smith, G. F. and Smith, G. N. (1970) Chem. Commun. 191.
- Bartlett, M. F., Sklar, R., Smith, A. F. and Taylor, W. I. (1963) J. Org. Chem. 28, 2197 and ref. therein.

Phytochemistry, 1975, Vol. 14, p. 1439. Pergamon Press. Printed in England.

ANTHOCYANIN OF ACANTHOPANAX DIVARICATUS

Nariyuki Ishikura

Department of Biology, Kumamoto University, Kumamoto, Japan

(Received 28 November 1974)

Key Word Index—Acanthopanax divaricatus; Araliaceae; delphinidin 3-xylosylgalactoside.

Preparative chromatography of the fruit extract of Acanthopanax divaricatus (Sieb. et Zucc.) Seeman revealed the presence of two anthocyanins, one of which was a new pigment. On complete acid hydrolysis, the new anthocyanin yielded delphinidin, xylose and galactose. The absorption spectrum (in 0.01 % MeOH-HCl) of the glycoside showed λ_{max} (nm) 283 and 532 and a bathochromic shift of 13 nm by the addition of AlCl₃ indicating the presence of a free o-dihydroxylic grouping in the B-ring. The ratios of Eu.v._{max}/Evis._{max} and E440/Evis._{max} were 58 and 22, respectively. These values suggest that the pigment is the 3glycoside [1]. By H_2O_2 oxidation the glycoside vielded the disaccharide which was identified paper chromatographically as lathyrose. On partial acid hydrolysis delphinidin 3-galactoside was detected as an intermediate. The pigment must therefore be delphinidin 3-xylosylgalactoside (3lathyroside), which has not been reported before. Recently, cyanidin 3-lathyroside has been found in the ripe berries of Aralia elata [2] and its variety canescens [3], and A. cordata [2]. Therefore, the glycosidic similarity of the anthocyanins in the plants in the family Araliaceae may be of systematic interest.

EXPERIMENTAL

The anthocyanin extract of the ripe black fruits was separated into two components by PC in HOAc-HCl-H₂O (15:3:82). Diagnostic chromatography of the new anthocyanin, its anthocyanidin and sugars were carried out by standard procedures [4]. The quantity of the second anthocyanin was too small to examine in detail. Chromatographic identification of lathyrose followed H₂O₂ oxidation of the glycoside [5]. Delphinidin 3-galactoside as the partial hydrolysate was identified by direct comparison with empetrin from Empetrum nigrum L. var. japonicum K. Koch [6].

REFERENCES

- 1. J. B. Harborne (1967) in Comparative Biochemistry of the Flavonoids, p. 17. Academic Press, London.
- 2. S. Sakamura and K. Kawano (1970) Phytochemistry 9, 1147.
- 3. N. Ishikura, unpublished data.
- 4. N. Ishikura and M. Shibata (1970) Bot. Mag. Tokyo 83, 179
- K. Kawano and S. Sakamura (1972) Agr. Biol. Chem. 36, 27.
- K. Hayashi, G. Suzushino and K. Ouchi (1951) Proc. Japan Acad. 27, 430.